

HOSTAFORM® C 9021 TF XAP®2 **HOSTAFORM®**

Chemical abbreviation according to ISO 1043-1: POM Molding compound ISO 29988- POM-K, M-GNS, 2-2 POM copolymer Injection molding type, modified with PTFE; good chemical resistance to solvents, fuel and strong alkalis as well as good hydrolysis resistance; high resistance to thermal and oxidative degradation; for sliding combinations with very low coefficient of friction. Reduced emission grade. Emissions according to VDA 275 < 5 mg/kg Burning rate ISO 3795 and FMVSS 302 < 100 mm/min for a thickness more than 1 mm. Ranges of applications: For sliding combinations with very low coefficient of friction. FMVSS = Federal Motor Vehicle Safety Standard (USA)

Product information

Resin Identification	POM+PTFE	ISO 1043
Part Marking Code	>POM+PTFE<	ISO 11469

Rheological properties

Melt volume-flow rate	6 cm ³ /10min	ISO 1133
Temperature	190 °C	
Load	2.16 kg	
Moulding shrinkage, parallel	2.0 %	ISO 294-4, 2577
Moulding shrinkage, normal	1.7 %	ISO 294-4, 2577

Typical mechanical properties

Tensile modulus	2350	MPa	ISO 527-1/-2
Tensile stress at yield, 50mm/min	50	MPa	ISO 527-1/-2
Tensile strain at yield, 50mm/min	10	%	ISO 527-1/-2
Nominal strain at break	16	%	ISO 527-1/-2
Flexural modulus	2250	MPa	ISO 178
Tensile creep modulus, 1h	2000	MPa	ISO 899-1
Tensile creep modulus, 1000h	1150	MPa	ISO 899-1
Charpy impact strength, 23°C	60	kJ/m ²	ISO 179/1eU
Charpy impact strength, -30°C	60	kJ/m ²	ISO 179/1eU
Charpy notched impact strength, 23°C	4	kJ/m ²	ISO 179/1eA
Charpy notched impact strength, -30°C	4	kJ/m ²	ISO 179/1eA
Ball indentation hardness, H 358/30	120	MPa	ISO 2039-1
Poisson's ratio	0.38 ^[C]		

[C]: Calculated

Thermal properties

Melting temperature, 10°C/min	166 °C	ISO 11357-1/-3
Temperature of deflection under load, 1.8 MPa	98 °C	ISO 75-1/-2
Coefficient of linear thermal expansion	110 E-6/K	ISO 11359-1/-2
(CLTE), parallel		

Flammability = 1 11 10 0 01

FMVSS Class	В	ISO 3/95 (FMVSS 302)
Burning rate, Thickness 1 mm	72.6 mm/min	ISO 3795 (FMVSS 302)

Printed: 2025-05-30 Page: 1 of 3

Revised: 2025-04-23 Source: Celanese Materials Database

HOSTAFORM® C 9021 TF XAP®2

Electrical properties

Relative permittivity, 100Hz	3.7		IEC 62631-2-1
Relative permittivity, 1MHz	3.7		IEC 62631-2-1
Dissipation factor, 100Hz	20	E-4	IEC 62631-2-1
Dissipation factor, 1MHz	80	E-4	IEC 62631-2-1
Volume resistivity	1E12	Ohm.m	IEC 62631-3-1
Surface resistivity	1E14	Ohm	IEC 62631-3-2
Electric strength	33	kV/mm	IEC 60243-1
Comparative tracking index	600		IEC 60112

Physical/Other properties

Humidity absorption, 2mm	0.2 %	Sim. to ISO 62
Water absorption, 2mm	0.65 %	Sim. to ISO 62
Density	1510 kg/m ³	ISO 1183

Injection

Drying Recommended	no	
Drying Temperature	100	°C
Drying Time, Dehumidified Dryer	3 - 4	h
Processing Moisture Content	≤0.2	%
Melt Temperature Optimum	200	°C
Min. melt temperature	190	°C
Max. melt temperature	210	°C
Screw tangential speed	≤0.3	m/s
Mold Temperature Optimum	100	°C
Min. mould temperature	80	°C
Max. mould temperature	120	°C
Hold pressure range	60 - 120	MPa
Back pressure	2	MPa

Characteristics

Processing Injection Moulding, Other Extrusion

Delivery form Pellets

Additives Release agent

Special characteristics Low wear / Low friction, Low emissions

Additional information

Processing Notes Pre-Drying

It is normally not necessary to dry HOSTAFORM. However, should there be surface moisture (condensate) on the molding compound as a result of incorrect storage, drying is required. A circulating air drying cabinet can be used for this purpose.

Storage

Printed: 2025-05-30 Page: 2 of 3

Revised: 2025-04-23 Source: Celanese Materials Database

HOSTAFORM® C 9021 TF XAP®2

The product can then be stored in standard conditions until processed.

Automotive

OEM STANDARD ADDITIONAL INFORMATION

Mercedes-Benz DBL5404 BQF

Mercedes-Benz DBL5410

Printed: 2025-05-30 Page: 3 of 3

Revised: 2025-04-23 Source: Celanese Materials Database

NOTICE TO USERS: Values shown are based on testing of laboratory test specimens and represent data that fall within the standard range of properties for natural material. These values alone do not represent a sufficient basis for any part design and are not intended for use in establishing maximum, minimum, or ranges of values for specification purposes. Colourants or other additives may processing conditions and environmental exposure. Other than those products expressly identified as medical grade (including by MT® product designation or otherwise), Celanese's products are not intended for use in medical or dental implants. Regardless of any such product designation, any determination of the suitability of a particular material and part design for any use contemplated by the users and the manner of such use is the sole responsibility of the users, who must assure themselves that the material as subsequently processed meets the needs of their particular product or use. To the best of our knowledge, the information contained in this publication is accurate; however, we do not assume any liability whatsoever for the accuracy and completeness of such information. The information contained in this publication should not be construed as a promise or guarantee of specific properties of our products. It is the sole responsibility of the users to investigate whether any existing patents are infringed by the use of the materials mentioned in this publication. Moreover, there is a need to reduce human exposure to many materials to the lowest practical limits in view of possible adverse effects. To the extent that any hazards may have been mentioned in this publication, we neither suggest nor guarantee that such hazards are the only ones that exist. We recommend that persons intending to rely on any recommendation or to use any equipment, processing technique or material mentioned in this publication should satisfy themselves that they can meet all applicable safety and health standards. We strongly recommend that users

© 2025 Celanese or its affiliates. All rights reserved. Celanese®, registered C-ball design and all other trademarks identified herein with ®, TM, SM, unless otherwise noted, are trademarks of Celanese or its affiliates. Fortron is a registered trademark of Fortron Industries LLC.